Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
RSC advances ; 10(34):19790-19802, 2020.
Article in English | EuropePMC | ID: covidwho-1888172

ABSTRACT

The novel Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is a potential factor for fatal illness and a tremendous concern for global public health. The COVID-19 pandemic has entered a dangerous new phase. In the context of drug discovery, the structurally-unique and chemically-diverse natural products have been valuable sources for drug leads. In this review, we report for potential candidates derived from natural sources with well-reported in vitro efficacy against SARS-CoV during the last decade. Additionally, a library of 496 phenolic metabolites was subjected to a computer-aided virtual screening against the active site of the recently reported SARS-CoV Main protease (Mpro). Analysis of physicochemical properties of these natural products has been carried out and presented for all the tested phenolic metabolites. Only three of the top candidates, viz. acetylglucopetunidin (31), isoxanthohumol (32) and ellagic acid (33), which are widely available in many edible fruits, obey both Lipinski's and Veber's rules of drug-likeness and thus possess high degrees of predicted bioavailability. These natural products are suggested as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics in the near future. Potential drug candidates derived from natural sources are posed for the development of anti-SARS CoV-2 therapeutics.

2.
Future Virol ; 0(0)2022 Mar.
Article in English | MEDLINE | ID: covidwho-1883846

ABSTRACT

Aim: Coronavirus disease still poses a global health threat which advocates continuous research efforts to develop effective therapeutics. Materials & methods: We screened out an array of 29 cannabis phytoligands for their viral spike-ACE2 complex and main protease (Mpro) inhibitory actions by in silico modeling to explore their possible dual viral entry and replication machinery inhibition. Physicochemical and pharmacokinetic parameters (ADMET) formulating drug-likeness were computed. Results: Among the studied phytoligands, cannabigerolic acid (2), cannabigerol (8), and its acid methyl ether (3) possessed the highest binding affinities to SARS-CoV-hACE2 complex essential for viral entry. Canniprene (24), cannabigerolic methyl ether (3) and cannabichromene (9) were the most promising Mpro inhibitors. Conclusion: These non-psychoactive cannabinoids could represent plausible therapeutics with added-prophylactic value as they halt both viral entry and replication machinery.

3.
Future Virol ; 0(0)2021 Sep.
Article in English | MEDLINE | ID: covidwho-1506213

ABSTRACT

Aim: The severity of COVID-19 has raised a great public health concern evoking an urgency for developing multitargeted therapeutics. Phlomis species was ethno-pharmacologically practiced for respiratory ailments. Materials & methods: An array of 15 phytoligands previously isolated from Phlomis aurea were subjected to molecular docking to explore their potential SARS-CoV-Spike-angiotensin-converting enzyme 2 complex inhibition, that is essential for virus entry to host cell. Results: Acteoside (11) showed the most potent in silico inhibition with an additional merit, over hesperidin (16), of not binding to angiotensin-converting enzyme 2 with well proven in vivo pulmonary protective role in acute lung injury, followed by chrysoeriol-7-O-ß-glucopyranoside (12) and luteolin-7-O-ß-glucopyranoside (14). Conclusion: Phytoligands (11, 12 and 14) were posed as promising candidates with potential prophylactic action against COVID-19. These phytoligands were prioritized for further biological experimentation because of their acceptable predicted ADME and drug-likeness parameters. Moreover, they could aid in developing multitargeted strategy for better management of COVID-19 using phytomedicines.

4.
RSC Adv ; 10(70): 43103-43108, 2020 Nov 23.
Article in English | MEDLINE | ID: covidwho-989975

ABSTRACT

Coronavirus (CoV) is a positive RNA genome virus causing a global panic nowadays. Tecoma is a medicinally-valuable genus in the Bignoniaceae family, with some of its species exhibiting anti-HIV activity. This encouraged us to conduct an in silico exploration of some phytocompounds in Tecoma species cultivated in Egypt, namely Tecoma capensis and its four varieties i.e. yellow, harmony, pink and red, T. grandiflora Loisel., T. radicans L., and one hybrid i.e. Tecoma × smithii W. Watson. LC/MS-based metabolite profiling of the studied Tecoma plants resulted in the dereplication of 12 compounds (1-12) belonging to different phytochemical classes viz. alkaloids, iridoids, flavonoids and fatty acid esters. The in silico inhibitory action of these compounds against SARS-CoV-2 spike protein C-terminal domain in complex with human ACE2 was assessed via molecular docking. Succinic acid decyl-3-oxobut-2-yl ester (10), a fatty acid ester, possessed the best binding affinity (-6.77 kcal mol-1), as compared to hesperidin (13) (-7.10 kcal mol-1).

5.
RSC Adv ; 10(34): 19790-19802, 2020 May 26.
Article in English | MEDLINE | ID: covidwho-635547

ABSTRACT

The novel Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is a potential factor for fatal illness and a tremendous concern for global public health. The COVID-19 pandemic has entered a dangerous new phase. In the context of drug discovery, the structurally-unique and chemically-diverse natural products have been valuable sources for drug leads. In this review, we report for potential candidates derived from natural sources with well-reported in vitro efficacy against SARS-CoV during the last decade. Additionally, a library of 496 phenolic metabolites was subjected to a computer-aided virtual screening against the active site of the recently reported SARS-CoV Main protease (Mpro). Analysis of physicochemical properties of these natural products has been carried out and presented for all the tested phenolic metabolites. Only three of the top candidates, viz. acetylglucopetunidin (31), isoxanthohumol (32) and ellagic acid (33), which are widely available in many edible fruits, obey both Lipinski's and Veber's rules of drug-likeness and thus possess high degrees of predicted bioavailability. These natural products are suggested as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL